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ABSTRACT 
A versatile assembly system, usD~g TV  cameras and computer.controlled arm and moving 
table, is described. It makes simple assemblles ~ as a peg a n d r o s  and a to)/car. It 
separates parts from a leap, r e c o ~ i ~  them wtth an overlw~ camera, then assembles 
them by feel. I t  can be Instructed to perform a new task with different ~ s  by sl~nding an 
hour or two showing tt the parts and a day programming the asxembly mam'puluti~nso A 
hierarchical description of  parts, views, outlines, etc. Is used to construct models, and a 
structure matching algorithm is used in recognition. 

1. Introduction 

A computer-controlled versatile assembly system has been programmed 
using the Edinburgh hand-eye hardware (Barrow and Crawford [3]; Salter 
[14]). The equipment (Fig. 1) consists of a movable table, a mechanical 
hand with sensors and rotating palms and two TV cameras, all connected 
via an 8K Honeywell 316 to a 128K time-shared ICL 4130 running POP-2 
programs. Several other programs are running on this equipment, includ'~ng 
a program for recognizing irregular objects and one which packs arbitrarily 
shaped objects into a box (Michie et al. [12]). The program described hem is 
our most ambitious effort. It is capable of assembling a variety of structures, 
and much of our effort has been spent in enabling the machine to acquire 
descriptions of the parts for itself using an overhead TV camera. 

1 The work was carried out when the authors were members of the now defunct De- 
partment of Machine Intelligence and briefly reported in the 1973 IJCAI conference. 

2 Present address: Stanford Research Institute, Stanford, California, U.S.A. 
Artificial Intelligence 6 (1975), 129-156 
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130 A.P. AMBLER. El" AL. 

Related work has been carried out at Hitachi (Ejiri et al. [8]), at MIT 
(Winston [17, 18]) and at Stanford University (Feldman [9]). The Hitachi 
program could build a variety of simple structures of blocks from line 
drawings of the ~ structure, the MIT programs can learn concepts about 
structures and copy an arbitrary structure of simple blocks given spare parts, 
and a recent Stanford program can assemble a simple automobile water 
pump using pre-programmed hand manipulations. 

FIG. 1. Overview of the equipment. 

2. The Task 

2.1. Specification 
A number of parts are placed by the operator in a heap on the table (Fig. 2, 
peg and rings). The machine's task is to separate the parts and recognize 
them, then to assemble them into some predetermined configuration (Fig. 3). 
Figs. 4 and 5 show another example, a toy  car. We are thinking in terms 
of up to a dozen parts with outlines described by up to twenty or so straight 
or curved segments from any one view, possibly with some holes of similar 
complexity. 

In order to explore the capabilities of a computer-controlled system as 
opposed to a conventional electromechanical device we seek a versatile 
assembly system. The demand for versatility is also calculated to raise 
interesting aspects from an Artificial Intelligence point of view. 
Artificial Intelligence 6 (1975), 129-156 
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FzG. 2. Parts for the peg and rings. 

FIo. 3. The peg and rings assembled. 

lO 

Artificial Intelligence 6 (1975"), 129--156 
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Flo. 4. Parts for the toy car. 

Fro. 5. Toy car assembled. 

Artificial Intelligence 6 (1975), 129-156 
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Our goal has been to develop a system which enables one to: 
(i) think up a new assembly involving a kit of parts which have not been 

used before, 
(ii) spend a few hours familiarizing the machine with the appearance and 

manipulation of the parts and instructing it how to assemble them into the 
required structure, 

(iii) leave the machine unattended, busily making the structures ad 
nauseam, provided *.hat a fresh heap of parts is dumped on the table from 
time to time. 

2.2. Performance 
We have achieved our goal for simple structures. We can show the machine 
half a dozen new parts and instruct it how to laythem out ready for assembly 
in about two hours; interactively programming the assembly operations 
themselves takes four hours or so. The machine can make the structures like 
the peg and rings, the toy car or a toy ship unassisted, but slowly, taking 
an llour or two to find and assemble the parts. The :system occupie s about 
50K 24-bit words of POP-2 code, It completes the assembly about nine times 
out of ten. 

The machine can deal with mixtures of kits: it has been given the com- 
ponents of the car (7 parts) and of the ship (6 parts) in one heap, and has 
produced the two complete assemblies.. ~ ' 

The program is written as two distinct sub-programs, layout and assembly, 
which do not at present communicate with each other, but rely on common 
conventions. 

The layout subprogram depends heavily upon tactile and visual infor- 
mation, and uses internal descriptions of parts and the table top. It can 
cope with mistakes, failures and accidents' 

The assembly subprogram is relatively simple, uses tactile information 
only and has no internal descriptions of parts. It is principally a rigid se- 
quence of assembly instructions relying on the correct positions of parts on 
the table or workbench. It cannot recover from accidents, though it can 
cope with small positioning errors. More interactive and integrated be- 
haviour during assembly is desirable and should be possible, but only with 
considerable further work. ' 

3. Instructing the System to Perform the Task 

3.1. Instructing the layout program 
For each part in each stable state (e.g., right way up, or on its side): 

(1) The operator places the part on the table under the vertical camera, 
the machine takes a picture and creates from it an internal description of 
that view of the part. This is repeated several times, and the machine adjusts 

Artificial Intelligence 6 (1975), 129r~]~6 
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its descriptions each time, taking note of the variations caused by re- 
orientation of the part and imperfect picture information. 

(2) The programmer types in on-line commands to move the hand, to 
pick up the object, turn it over, put it down and pick it up again if necessary, 
then to put it dov,~n in the standard position and orientation. (If the assembly 
has several identical parts, separate commands are given for putting each 
one down in its own place.) The programmer intersperses these commands 
with instructions to  remember the current state, e.g., when thehand has 
closed over the part. The system takes a note of these specified states and at 
execute time constructs a sequence of actions to put the part into its standard 
position and orientation. 

3.2, Writing the assembly pregram 
The prograntmer begins with all the parts laid out in their standard positions 
and orientations. He then interactively devises and edits some POP-2 pro- 
gram to make the machine pick up the part and fit it into the assembly. His 
program uses basic move and grasp operations, and two high level manipu- 
lation operations provided for constrained moves and hole fitting. 

4. Performieg the Task 

The parts of the kit are dumped in a heap on the platform and the program 
started by typing RUNTASK. The system transforms the heap into a com- 
pleted assembly in the following two stages. 

4.1. Layout 
in this stage the parts are separated and visually identified and then put into 
their standard positions and orientations. 

Parts, or tleaps of parts, are first located on the table using the side camera 
(wide angle). Each part or heapisthen inspected withthe overhead camera. 
Recognizable isolated parts are picked up andlaid out in standard position 
and orientation. Unrecognizable objects are called heaps. 

If not all required parts have been laid out,~the smallest heap is attacked 
in an attempt to decompose it; if a suitable protrusion is visible it is grasped 
and pulled from the heap, otherwise an attempt iS madeto lift it as a whole 
and turn it over, so that it falls apart; if all else fails the hand is driven through 
the heap to spread and separate it, if failure is total, attention is dir,~cted to 
another heap, 

If some parts are missing, the program complains. If there are more than 
required it clears them away. 

4.2. Assembly 
This stage begins with the assumption that all parts have been found and 
laid out. 
Artificial Intelligence 6 (1975), 129-! 56 
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The parts are fitted together by feel without any visual guidance and using 
no internal descriptions of the parts. The sequence of. operations is deter- 
mined by the programmer and can include tactile tests (e.g., to discriminate 
between visually indistinguishable parts) as well as movements guidedby 
touch (e.g,, feeling when a part is firmly located), A workbench with a 
simple vice and various working surfaces is used. 

S. More Detailed Description of the Layout Subprogram 

5.1. Its knowledge, specifications and assumptions 
There are three classes of information used by the programs: assumptions 
about the nature of the world (usually in procedural form), specification o f  
certain facts about the world and the robotsystem (e.g., camera to platform 
transformations), and representation of the state of the world and the robot. 

The most obvious facts about the structure of the robot, namely the 
existence of platform, hand and TV camera and their operation, are primitive 
to the system. 

The essential parameters of the system are specified by constants or data- 
structures, including: 

range of movements of the hand and platform, 
size of the platform, working space, and workbench, 
camera transformations, viewpoints, visible space. 

The implicit assumptions about the task and parts are: Parts are rigid, 
small enough to be picked up, and are light in colour. They are also large 
enough to be visually recognizable and are (usually) visually distinguishable. 
Parts and heaps are supported by the movable table, which is dark in 
colour. Parts can each rest on the table in one of a small number (say < 10) 
stable states (a cylinder on its side we define to have One particular stable 
state, rather than a continuum of states). To each stable state there cor- 
responds a unique view from the overhead camera (unique to within trans- 
lation and rotation in the image plane). 

The number of parts is such that they can be laid out  ia the de~iguated 
area without mutual interference. 

It is assumed during the layout phase that parts are not fixed together, 
i.e., are separable by simple pushing or lifting. 

5.2. Representation of the world and robot 
The state of the robot at any time is given by a record which contains the 
positions of hand and platform. The camera currently in use, and its 
characteristics are given by another record. When the picture-taking routine 
is called, it returns a picture record which contains a grey-scale array, speci- 
fication of the part of the image sampled, and the records giving the state 
of the robot and TV camera used. 

Art~icial Intellioenc¢ 6 (1975), 129--156 
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• Therest of the worldis specified,by a fist of all known objects, An object 
record contains information about the volume Of space within which it lies, 
the type, i f  known, and its stable~ State, and various properties, such as 
"IMMOVABLE" or "PUT AWAY". 

Objects~records for the hands are created when required and are not kept 
in the list of known objects. 

Descriptions of object types, their stable states and appearances are con- 
structed machine during instruction. They are described in detail 
later. 

5.3, Control . . . .  
The datathe program has about the world are held in global variables and 
data structures, There is a simple top-level routine that examines theidata 
and decideswh~ich mode of activity is now appropriate, calling the relevant 
subroutine. S u ~ s s  or failure of the subroutine causes a re turnto the top- 
level Itest-and-execute,loop which is only satisfied when the task is completed. 
It is therefore persistent in its actions, end always tackles the globally 
appropriate job, ~ .~ . • 

We may transcribe the POP-2 code thus" 

loop: /ftask-completed then gore exit 
elseif all-tidy then assemble - 
eiseif search.needed then explore(work-area) 
elseif  parts-untidy then put-all-away ~ 
elseif extra-objects then discard-0bjects 
e/se/fparts-needed then smash-a-heap 
elseif  lost-parts ~hen search-for-missitig-parts 
elseif extra-heaps then put-heaps-in-corner; 
gore loop 

exit: 

t 

If one of the subroutines encounters difficulties it can : simply jump out  tO 
loop, Some. of the lower level routines set up their own failure traps for 
particular conditions e.g. some assign a label to the v~iable PICKUP-FAIL, 
and.~ failure to pick up an  object subsequently causes a jump out to the 
current label. 

$.4. Exploration 

The program relies heavily upon taking a picture andthen tryingto place 
what it sees into correspondence with what it kttows. It does this by analysing 
the picture initially as a set of bright regions Colobs) on a dark background. 
It also computes which known objects may possibly be visible, and the 
approximate size and po~ition of their images, A matching ~- algorithm (d,d~ 
scribed later) is then used to find the best correspondence between regions 
Artificial Intelligence 6 f197b'), 129,-1~$6 
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and exoected images, allowing for occlusions. The result of this process is 
an "explanation" of the picture at the level of objects without considering 
more detailed information such as shape . . . .  

During exploration of a space, the program divides the space up appro- 
priately, takes a picture of each subspace with the oblique camera and 

i . . "explains" the picture. A check of the explanation ndlcates any hitherto 
unobserved objects (or the disappearance of already known ones). Hence 
the program determines which parts of theimages require further analysis, 
and which part of the worldneeds further examination. 

During manipulative activity, visual checks are made that things are 
proceeding smoothly; discrepancies between what is expected and what is 
seen invoke appropriate actions (e.g., that there is room to put down an 
object). 

When the program observes an inexplicable region, it generates a new 
object record, for which it computes an appropriate volume of occupied 
space, assuming the object to rest on the platform, without analysing its 
shape in detail. The program takes a detailed picture of the new object 
(moving the platform if necessary) to make this as accurate as possible. It 
moves the object under the overhead camera, takes a coarse picture, and 
finds the appropriate region after making up an explanation. It can then take 
a more detailed picture of the object, and update the volume occupied by 
combining the information from the two viewpoints. It is now in a position 
to apply the recognition process described in Section 6 to the region rep- 
resenting a detailed view of the object from above. 

5.5. Separating Farts from a heap 
The process of removing parts from a heap is heuristic, that is it needs a 
little luck. But it has never failed, if the machine is left to worry at a heap 
long enough. 

Having decided that a heap is to be broken, the machine chooses the 
smallest one. It then takes a picture of it with the overhead camera, and 
checks that i t  cannot be recognized as a part. (A part may occasionally not 
be recognized, and therefore be classified as a heap during exploration. If it 
is subsequently recognized during the check prior to heap-breaking, the 
program exits from this mode of activity, and will then attempt to put the 
part away, or discard it.) 

The outline of the heap is examined to determine whether a suitable 
protrusion exists. If there is one which is of appropriate size, a visual check 
is made to see whether there is room to lower the hands and grasp it; severed 
possible positions are considered. If a graspable protrusion is found, the 
hand grips it and lifts it aw~y from the rest of the heap. The area near the 
location of the original heap is now explored to see what has happened. 

Artificial lntelliomce 6 (1975). 129-156 
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The program now finds a suitable empty space, by considering its world 
mode| and then visually checking the space chosen. The object held is then 
put down, examined and recognized, if possible. The heap-breaking sub- 
routine is then left. 

Should the protrusion grasping go astray, either by fumbling during lifting, 
or by the protrusion being ungraspable in the first place, another protrusion 
is considered. Should there be no suitable protrusion left, a second heap- 
breaking tactic is employed. This second tactic is to feel the height of the 
heap, and then to make a general grab a t i t  half way up. The hand is lifted, 
and a tactile check made to confirm that something is being held. If not, a 
second grab is made, at the bottom of the heap. Having tried the second 
tactic, if the hand is holding something, the remainder of the heap is examined, 
and also the object held, as before. 

Should the first two tactics fail, the third tactic is to plough the hand 
through the heap just above the table top, after visually finding suitable 
empty spaces for the start and finish position of the hand. The area near the 
heap is now explored. This is effective, but usually disturbs the table top 
extensively so that considerable updating of internal representation is 
ne~zssary. 

Finally, if the heap has not been broken in two, the machine directs its 
attention to another heap; it will therefore eventually stop worrying at an 
unrecognizable object in the belief that it is a heap. 

Clearly there are s,,~ler ways of picking objects out of a heap, but our 
simple tactics suffice. 

As a temporary expedient, recognized objects which for some reason have 
not been successfully grasped during the putting-away mode, are labelled 
"UNLIFTABLW'. The heap-breaking routines can then be applied to them 
in the hope of extricating them from whatever caused the original failure. 

6. Recognition of Parts by the Layout Subprogram 
&l. Desc~ptions 
We shall now explain the kind of internal descriptions of parts used in the 
layout program. We can then show how i t  creates these descriptions at  
instruction time and how it uses them to recognize parts at execution time. 
For clarity we have simplified a few programming details, glossing over 
some unnecessary or uninteresting distinctions. 

The program works in terms of hierarchical descriptions o f  the objects on 
the table. Thehierarchy consists of a tree of entities; each entity has below 
it either an n-tuple of entities or a substructure whose nodes are a set of 
entities with certain inter-relationships. We call these entities at the lower 
level the component~ of the entity above. In the computer the entities are 
represented by data records linked by pointers. The entities used are sum- 
marized in Table 1, and Table 2 gives a brief description of each. 
ArtifiCial Intelligence 6 (1975), 129-156 
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Each entity either has an n-tuple of components, or it has a set of com- 
ponents. The size of the n-tuple is fixed as in the above ,'syntax", for example 
a region has a pair of components (an outline and a hole.set); but the size 
of the set is not fixed until instruct time, for example the system discovers 
that the hole-set of a car body side view has two holes. 

T~sLs 1. Hierarchical structure of entities 

An entity is either a table top, or an object, set, or an objeei, or a 
part, o r a  hand, or a workbencl 

AnOb]ectis either a part. or  a ~ d ,  Ora W o r k ~ o r  a heap, • 
A part hasstable states. • 
A stablestate hasa  view. • 
A v/ew has a region. 
A veolon hasan outline ' and a hole-set. 
A hole.set has holes. 
A ~ l e l h i ~  a n , o u t l i n e .  ~ ' . " ' l " 

A n  outline has segments. . . ,  " 
f i . - _  • J l  ~ l l  i . i  i , L | , I  . ' . , i  ~ _  I "  . - ~  

. • ~ - 

TABLE 2.. The entities used -- 
. u . . .  r , " " . J , . 7 n , r . L  L , , , " - I , , ,  . , ,  . . . .  , . ,  . , ,  

The Table topisthe whole col!ectionof thingson t h e ~ k .  " " " 
An Object isany physical t ~  on the.table w h i c h ~ b e  seen .or. touched; it is 

initially disting~hed from its surroundings by dearspace on the table, 
A Part is one of the separatepieces needed for the assembly e.g. one of the wheels of 

the car. 
A Stable.state is one of the states in which a part can rest on the table, i~-respeeti~ 

of orientation or position e.g. on its side, upside down, There should be only a 
small number of distinguishable stable states. 

A View. is an analysed TV pi~ure. 
A Region is a connected light area in a picture, possibly with darker holes (we use 

light objects on a dark background). 
A Hole isa dark area inside a region. 
An Outline is the outer boundary of a region or hole. 
A Segment is a segment of a circle (up to 360 °) with specific length and curvature (zero 

curvature nganS a straight segment). The irregular boundary of a region or hole is 
analysed into a small number of segments by curve fitting (Fig. 6). 

i i  i i i f  i J . _  . , 

An enti ty may possess properties and some relations (in practice only 
binary o n e s ) m a y  subsist between its components. The properties and  re- 
lat ions have n a m e s  and may be  truth-valued or  t a k e  values in some other 
domain such as integers or else reals with a given s tandard deviation. For  
example, p rope~ ies  of  regions are area and compactness (area/perimeterZ), 
and relations between segments are distance and relative orientation. 

We m a k e  an  important  distinction between three kinds of  entities, 
sense data, model and individual. Each has entities of  its own kind as com- 
ponents. 

Artificial Intelligence 6 (1975), 129-156 
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A sense data entity is an internal description of information obtained 
from the TV camera, generated by a particular exposure to a physical object. 
A model entity is a sunfmary or composite of a number of such experiences. 
The end result of the ins~truction phase is a collection of model entities in- 
corporating the system's knowledge about the parts, their views, outlines, 
etc. and their variations. The sense data views and outlines which gave rise 
to them will have been discarded. 

l=Io 6. Segmentation of an outline. 

The important operation in recognition is the finding of a match between 
sensory and model entities, determining which components of one correspond 
to which components of the other. The match is expressed as an individual 
entity which contains a pointer to its sense data and one to its model; thus 
binding them together. The components of an individual are individuals 
which in turn bind corresponding components of sensory and model entities. 
An individual also contains certain specific information, e.g. position and 
orientation, not appropriate to model entities. 

There are a few exceptions to the above. The system does not create 
models for its hand or the workbench at instruction time; these are given 
beforehand. There is no model for a heap since an individual heap is generated 
by elimination, on failure to recognize a part, hand or workbench. 

The system has a data structure for each sense data entity, model entity 
and individual entity; these are POP-2 records linked into a tree structure 
by pointers t o  their components. There is also a data structure for each 
enti,y class, for example the class "view" and the class "region". Each 
Arfiflcial Intelligence 6 (1975), 129-156 
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sensory, model or individual entity belongs to some class and certain data 
pertains to the class as a whole---namely (i) a list of  the properties which an 
entity of that class enjoys and functions for computing their values from the 
corresponding sense data, (ii) similarly for relations, (iii) functions to extract 
the sense data for components from the sense data for the whole (e.g., to 
extract the starting and finishing points, curvature, etc. for each component 
segment from thechain encoded representation of  the boundary). 

The entity classes are one level of  generalization above model entities. No 
matter what kit the program is working with, it has the ~ m e  basic hierarchy 
of  parts, views, outlines, etc. The data structures representing the entity 
classes provide the program with the knowledge needed t o  co~truct  the 
hierarchy of  model entities. 

Table 3 summarizes the four notions of entity class, model entity, in- 
dividual entity and sense data showing what information is associated with 
each. Fig. 7 gives the data structures representing correspcnding entities 
in a simple case. The use of this information will be clearer when we discuss 
the recognition process. 

TABLE 3 

Notion and.. symbol Associated descriptive information 

Entity classes, C 

. . . . . . . . .  i - "  

Model entities, M 

Individual entities, I 

Sense data, D 
. . . . . . . .  

Property names P, Relation names R, Property finding 
functions f :  D -* V for p e P (V is the set of values for 
properties and relations). Relation finding functions 
f :  D 2 -* V for r ¢ R, Classes of components, Component 
finding functions in D --* D, matching function in D x M 
--,. 21. 

Class, values of properties and relations, components. 

Class, values of properties and relations, comoonents, 
parameters, points to model and to sense data. 

At view level: 
2.D brightness array from TV picture. 

At region level: 
region perimeter as list of vector increments, 2-D 
Boolean array showing whether point is inside and 
brightness array. 

At hole level: 
as for region level referring to dark holes. 

At segment level: 
segment length, curvature and position. 

(Note: f :  X-., Y means fis  a function from X to Y, and x means Cartesian product.) 
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Fxo. 7. Hierarchies. 
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6.2. The matchtug preeess which reeegnizes parts 
To understand t~e recognition process let us consider what happens when 
the system has taken a TV pictureand tries to interpret it as a side view of a 
car body. This may be during the instructionphase when it has been told 
that it is looking at the side view o f  a car body, or during the execution 
phase after it had found an uptight car body and turned it over. Or again it 
might be dea~ng with an unknown object, and "sideview of car body': 
might be just one possible interpretation among several which it was trying. 

The TV picture, a 2-dimensional array o f  brightness levels, constitutes a 
sense datum, d in D. A matching function is now applied to this sense datum 
and the model of the side view of the ca r  body. This function produces a 
set of individual side views of car bodies, an empty set if there is no way of 
interpreting the picture as such a view, otherwise one element for each 
possible interpretation, Thus 

match: Sense data × Models --, Set of individuals. 
The matching function works its way recursively down the hierarchy from 

top to bottom, comparing gross properties on the way down and failing if 
they are too discrepant. Thus it might fail because the area of the region it is 
looking at in the picture is too small for a car body, without bothering to 
analyse the outline of the region. As it goes down it refines the sense data, 
using a thresholding region finder routine to get region level sense data from 
the view level brightness array, finding holes with the same routine to get 
hole data and fitting curves to the perimeters to get segment data. (We have 
called the region finder and curve fitter "component finding functions".) 
When it gets to the bottom level the recursion unwinds and passes up the 
hierarchy descriptions of individual entities, using their finer properties and 
relations between them to establish correspondence with the model and to 
resolve some ambiguities. At  each level the matching function produces a 
set of individual entities each of which might correspond to the model, 
thus dealing with ambiguity essentially as would a "back-track" or non- 
deterministic process. 

To be more precise, the function "match" works as follows: 

Function match(d, m) 
Let c be the entity class of m. 
Let f be the special matching function of class c. 
Result ffi f (d ,  m). 

The special matching function f m a y  vary from clas~ to class, but normally 
f i s  "general-match", defined as follows: 

General-match: Sense data × Models --* Sets of individuals 
Function general-match(d, m) 

Let c be the em.~ty class of m. 
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Let P be the set of properties for class c. 
For each p in P, compare fp(~, the value of property p for the sense 

datum, with the value of p in the model m. If there is too much dis- 
crepancy exit with result - empty set. 

C a s e  1. m has an n.tuple of components, ml, . . . ,  rnt. Apply the com- 
ponent finding functions of the class c to d, to  find sense data relevant to 
the components say all , . . . ,  dn. As each d s is computed, match it against the 
component m s, thus let I s ffi match(dj, ms). I f  some/ j  is empty, then exit 
immediately with result = empty set. Otherwise use each element of H~=l/j 
(the Cartesian product of the set of individual components)to construct a 
new individual with these components, The result is the set of these indi- 
viduals. 

Case 2. m has a set of components, $,. Apply the component finding 
functions for class c to find a set of sense data relevant to the components, 
Sa. Use the relation value finding functions of c, f ,  for r in R, to compute 
the values of relations between the Sd- Compare these with the known values 
of the relations for the S,, and use the relationalstructure matching algorithm 
(described below), together with the function match,  to  find the largest sub- 
sets of Sj which correspond. If these subsetsare sufficiently large, construct 
a new individual entity from each correspondence among the components. 
The result is the set of individuals so constructed. 

Our recognition process is basically recursive (we have experimented with 
some process-swapping techniques but they are not in our program at 
present), This does not lead to too much rigidity, because we make rather 
extensive use of "memo-functions" (Michie [11]); for example, when an 
aralysis of the outline of a region is required the analysing function re- 
members the result and, when asked for it again, simply returns it immedi- 
ately. Thus outline analysis is only done when needed and never repeated. 

6.3. Learning and modifying descriptions 
The description of an object is "learnt" by the system being shown that 
object underneath the vertical camera, and being told its name and current 
stable state. Using the taxonomy to guide it, a model entity is made, the 
regions of the view, the holes, and the outlines of the regions and holes 
being computed, together with their properties and the relevant relations. 

The learnt description is modified by showing the system other views of 
the same object in the same stable state. In order to modify a model, the 
new view is matched with the model, exactly as in the recognition process 
(but with some constraint, loosened). If a successful match is made, those 
parts of the model which have been matched in the individual are updated. 

The process is repeated until all possible "stable states'" of the object 
have been observed. 
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6.4. Matching relational structures 
A set of segments forming the outline of a part can be regarded as a re, 
lational structure endowed with properties, such as  length and curvature, 
and relations, such as adjacency, distance or relative orientation. Holes and 
objects on the table top can be similarly regarded. Although the properties 
and relations usually take numerical values (length) it will simplify the dis- 
cussion to talk in terms of truth valued ones (long, medium, short). In the 
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Flo. 8. Outlines and their corresponding relational structures. 

algorithr:, given in Section 6.2 there is a point (Case 2) where we need to 
put two sets (of segments, say) into correspondence on the basis of these 
pro~rties and relations, TV picture processing being what it is we expect 
discrepancies (segments missing, two segments coalesced) but we want to 
match as many elements as possible. Fig. 8 shows two simple outlines and 
corresponding relational structures; they have several conh-non substructures, 
e.g., {11', 32', 54', 43'}. 
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More precisely, by a relational structure we mean a set of elements to- 
gether with a set of properties P and a set of' relations R over it (we consider 
only binary relations here). Given two relational structures ($1,P,  R> and 
($z, P, R ) w e  define a match between them as a set Tl c__ 81, ase t  T2 -~ $2 
and an isomorphism, ~,, between T~ and T2 preserving properties and 
relations. Thus sl ~, sz implies p(sl) i f f~sz)for  each p in P, also sl ~ sz and 
s~ ~ s~ imply r(sl, s~) iff r(s2, s~) for each r in R, and a match represents a 
common substructure in our two relational structures. 

We can find matches as follows. By an o~sionment we mean a pair (sl ,  s2> 
with sl in $1 and sz in $2 such that p(sl) iff p(s2) for each p in P. In Fig. 8 

the  assignments are: l l ' ,  12', 14', 23', 31', 32', 34', etc. We say two assign- 
merits (st, s2) and (sl,  s~) are compatible if r(s~, s |)  iff r(s2, s~) for all r in R. 
Now by definition a match is just a set of assignments such that each 
assignment is compatible with every other assignment in the set. Indeed we 
may think of the assignments as forming the nodes of a graph with com- 
patibility as the (symmetric) relation forming the arcs. Our problem then is 
to find totally connected subsets of this graph, often called cliques. 

A clique is said to be maximal if no other clique properly includes it. 
Finding maximal cliques is a well known problem (Karp [10]). A graph of 
n assigmnents may have 2 n/2 or 3 "/3 maximal cliques in a theoretical bad 
case, but at least we can find each maximal clique quickly. We can do this 
by using a refinement of a simple binary search algorithm given by Burstall 
[5]. Bron and Kerbosch [4] present an algorithm which differs only slightly 
from ours. 

In fact, for our recognition problem we only wish to find largest maximal 
cliques (those with the largest number of elements). We can readily guide 
our algorithm to do this by introducing a maximizing search, instead of 
simple recursion. 

In this section we have defined an assignment as a pair of elements, one 
from each structure, which have identical property values. More loosely 
one can demand only some degree of similarity in the properties. Our 
program uses as the assignments the set of all pairs (m', i ' )  such that i' is 
in match(d', m') for some m' in $,~ and some d' in Sd. This gi~es us the nodes 
in our graph; the ares are found by defining compatibility to be some suitable 
degree of similarity in the relations, not necessarily demeading one-one 
correspondence, 

This relational structure matching is used three times by the layout 
program: to match segments in an outline, to match holes in a region and 
to match objects on a table top, e,g., associate some objects which it now 
sees with its previous knowledge, It gives us a robust matching technique 
which can make correspondence between observed and predicted elements 
in spite of imperfect data. It has some similarity in its way of working to 
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Waltz's technique for labelling pictures (Waltz [15D. Winston [16] also does 
structure matching. Graph isomorphism is a well-known problem (e.g., 
Corneil and Gottlieb [7]); relational structure isomorphism is essentially the 
same. Testing whether one structure is a substructure of another (graph 
injection) is computationally harder (Barrow et al. [2]), indeed itis known to 
be polynomial complete (Cook [6]); our problem here, finding common 
substructures, is still more onerous, but it is needed if bothstructures have 
imperfections, 

6.5. Motivation and development of the above approach to matching 
The entity taxonomy evolved during our programming. At first we tried 
evading most of the difficulties of visual recognition by using white objects 
and black background, and viewing from overhead; we hoped a simple 
technique like template matching would cope well enough for us to direct 
our attention to other problems, at least temporarily. In the event, experi- 
ments with matching boundaries of regions (slightly smarter than templates) 
were frustrated by camera non-linearities and perspective distortions, so we 
decided to use structured descriptions instead of pictorial data. 

Some ~:f our previous research (Barrow et al. [2]) had been concerned with 
the problems of matching such descriptions--simple techniques explode 
combinatorially, so some subtlety is called for. A powerful approach is to 
decompose the description into pieces that can bc treated more or less 
independently, a small number of matches found for each, and then some of 
these are comb;ned to  rand a match for the whole. This approach works well 
when descriptions have an obvious decomposition (e.g., a teapot must have 
a handle, a body and ~ spout), particularly if the decomposition can be made 
recursively and if substructures (like spouts)are common to a number of 
descriptions--in which case redundant work need not be done. 

In our next e~r iments ,  w e  formed such hierarchical descriptions of 
views of objects and wrote programs in which the knowledge was embedded 
procedurally; that is, the description and matching were mixed together as 
a sequence of tests to be made. The subroutine structure of the program 
reflected the decomposition of the description. 

While we were able to make this scheme work, we found a number of 
problems: programming was tedious, the representation was rather in- 
flexible, suitable decompositions were not always unique or obvious. The 
problem of imperfect matches had not been adequately solved (e.g., if the 
tip of the spout is missing, that could mean no spoat and hence no teapot, 
despite much evidence to the contrary). We wishedL to alleviate these diffi- 
culties without incurring combinatori~', penalties, ~Lnd so were led to the 
present scheme. 

Firstly, we noted that there was an indisputable b_;erarchical decomposition 
Artificial Intelligence 6 (1975), 129-i56 

11 



148 A. P. AMBLER El" AL. 

of our view descriptions, namely that of data types, regions, outlines, holes, 
etc. which it would be foolish to ignore. Secondly, we should use properties 
as a primary test; relations hold between entities at the same level (i.e., 
between the components of the entity of the r level above). Thirdly, our 
hierarchy should operate primarily "top-down" since if an entity cannot be 
matched by virtue of its properties, its components clearly do not match. 

We were faced with one remaining problem: at some levels we must match 
a set of things against another set, for example a set of holes, a potentially 
explosive situation. Any decomposition into subsets would be arbitrary, 
and therefore prone to problems outlined above. We therefore reconsidered 
the matching problem and transformed it, as we demonstrated earlier, into 
that of finding cliques of a graph. Since no suitably efficient clique-finding 
algorithms were available we devised our own. 

Matching via cliques ~eems a good technique,~ it is tolerably ~ efficient and 
can give partial matches for misinterpreted or imperfect information (e.g., 
occlusion), in a pseudo-parallel way. Since set matching still tends to be 
exponential in complexity, the hierarchy is necessary to keep sets small. 

We rewrote there cognition system in line with these ideas, in particular 
separating description data from matching procedures. In order to simplify 
programming we arrangc:d for the system to be capable of learning de- 
scriptions. This we achieved by providing a data structure describing the 
entities (regions, holes, etc.) and giving information about how to find, 
represent and match them. Thus provided with a "model of models" it is 
relatively straightforward to construct particular models of views auto- 
matically. We have the additional bonus that we can readily change the 
nature of the hierarchy and its component entities by changing the defining 
data structure, but we can still use the same program to construct and match 
models. 

Having produced an operational recognition system, it became clear that 
its underlying scheme could be extended upwards to include objects and the 
table top. The matching techniques were used to "explain" each picture 
taken in terms of objects, but the hierarchy was never extended to include 
this process uniformly. Above the level of views ad hoc code was used. 

We think any scheme which simply finds possible correspondences be- 
tween descriptions, without accounting for the discrepancies in some way, 
unsatisfactory. Unaccountable discrepancies indicate an incorrect cor- 
respondence. The process that explains pictures of the table top does try 
to account for unexpected phenomena such as occlusions, missing objects, 
new objects, and does suggest appropriate action to be taken-e.g., go and 
examine that new object. The recognition process does not (beyond account- 
ing for anything not matched as a "heap"). We considered trying to improve 
a correspondence between a pair of segment sets by breaking or merging 
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segments, but decided (a) that the models we were using were not good 
enough (see Section 8.3) to enable anything useful to be done, and (b) that 
the time required to do this for a doubtful correspondence would be better 
spent taking and examining another picture of it. 

7. More Detailed Description of the Assembly Subprogram 

This program works blind, using only hand sensing. It is written interactively 
at instruction time in terms of basic hand moving and sensing operations 
together with two higher level operations. 

The basic operations include "raise z centimetres", "move to (x, y)", 
"grasp to w centimetres", "rotate palm by 0", and functions for reading 
forces on the hand by means of strain guages, namely gripping force, weight 
of the object held and torque. There are two higher level operations: con- 
strained move and hole fitting. 

Constrained move. This operation has two parameters, both force vectors, 
f= a force opposing movement and f~ a constraining force (Fig. 9). Leg um 
and uc be the unit vectors in these two directions. Let 8= and 8c be small 
scalar distances. The hand attempts to move in direction-urn until it is 
opposed by a force larger thanf, .  At the same time itkeeps in contact with 
a surface which offers a resisting force f,.. The resulting movement will not 
necessarily be in direction-Zm but along the surface according to the com- 
ponent of -urn tangential to the surface. The operation works in detail as 
follows: 

(1) If a force greater than f,, is felt, then stop. 
(2) Move by -e.um. 
(3) If a force greater than f~ is felt then move by 8~c and goto 3, otherwise 

goto 1. 

Fig. 9 shows an example of the pattern of movement which a single call 
on the constrained move operation might produce. The constraining force 
parameter maybe left undefined giving an unconstrained move in direction 
-U,n until an opposing force is felt. This operation was suggested to us by 
work at MIT Draper Laboratory (Nevins et al. [13]), which gave us several 
valuable ideas about assembly. 

Hole fitting. This operation has two force vector parameters f~ and f~. Let 
uc and us be the corresponding unit vectors and 8c and 8s small scalar 
distances. It is used when the hand is holding an object with a protrusion 
which must be fitted into a hole (e.g., axle into car body) or is holding an 
object with a hole which is to be fitted over some protrusion (e.g., putting a 
ring on the peg). The hand moves in a spiral pattern normal to u~, pushing 
repeatedly in the direction uc until an opposing force greater than f~ is felt 
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Fro. 9. A constrained move. 

A constrained move 

Fro. 10. Assembling the car on the workbench, 

and then retreating and making a short move in the direction of the spiral 
before trying again. When, at some point in the spiral, it succeeds in moving 
forward by 8~Uo it tests whether it has found the hole by moving• sideways 
by v-jIs. If a force greater them L is encountered (or after five attempts), 
the process stops, otherwise the spiral pattern is resumed. 
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The tactile hole fitting program allows the robot to make insertions which 
could not be made by dead reckoning either because of defects in the robot's 
absolute position sense or because of irregularities in t h e b ~ i e s  being 
handled. The effective gain is not large-i t  is feasible to search an area 
4 mm square with a pitch of l mm. The technique is dependent ill on being 
able to ma;ntain sufficient local dead. reckoning (in space and t i m e ) t o  
accomplish the pattern. . . . .  

The wooden car  asse~lbly gives an idea of how the program proceeds. 
A "workbench" is used, fixed to one corner of the table (Fig, 10).i I t ~ a  
"vice '~' for holding a wheel while an axle is being inserted, consisting oflan 
L-shallOt corner piece and a pivoted bar which the hand closes so that the 
wheel is held between the bar and the L, It also has a vertical "wall" so that 
the car body can be held firmly while the second w)~eel is pushed onto each 
axle. 

The sequence of events, in outline is: 

(i) The hand puts a wheel in the vice and inserts an axle. 
(ii) It turns the car body upside down, picks up the axle with the wheel 

on it and inserts it into the body. 
(iii) Repeat (i) and (ii) for the second wheel and ~le.  
(iv) Put the car body against the wall upside down with the two wheels 

against .the wall, 
(v) Push. the remaining two wheels onto the protruding axles. 

(vi) Pick up the assembled car and place it on the table. 

Assembly programming is still quite tedious, involving choice of numerical 
parameters for distances :rod forces, and we have some ideas for easing it 
(Ambler and Popplestone [1 ]). There is clearly a lot of thinking to be done 
before we could make the assembly phase as versatile and easily instructable 
as the layout, e.g., by replacing numerical commands with instructions using 
relations like "on top of" and "fitting into" or by showing the machine 
intermediate assemblies. In particular oar present assembly subprogram does 
not use the internal descriptions of the parts which have been acquired during 
instruction by the layout program. Such descriptions would have to be recast 
so as to be useful for assembly as well as recognition. 

8. Concluding Remarks 

8.1. Development 
The project took one year (about four man-years efi0t~) to complete with 
approximately the following breakdown 
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man-year 

basic facilities (extension) 1 
recognition 1½ 
layout 
heap-breaking 
assembly 
the rest (e.g., teaching, testing) ½ 

Each part of the system was programmed by one of us, and the parts were 
put together later. 

At the beginning, it became clear that the existing software packages 
for vision and manipulation needed to be rewritten, the v'~ion package to 
deal properly with multiple cameras, and mobile viewpoint, t~e manipulation 
package to deal with force feedback. It took some time to kit upon a good 
representation for :oncepts like cameras, pictures and robot positions and 
their interrelationships. 

Much effort (perhaps 30 ~) went into the development and implementation 
of the recognition processes. As indicated in  Section 6.5, several versions 
were tried before the current one was developed. Initially the recognition 
system was an independent package; the function RECOGNIZE was given 
a region, and returned an individual. Its development was therefore relatively 
unconstrained, It was only much later that some of the recognition routines 
were used to explain every picture taken. In the current system, the recog- 
nition package still remains self-contained. However, we have recently 
experimented with manipulation as an aid to vision; height of an object is 
easily measured by lowering the hands onto it; an attempt can be made to 
turn over an object when an ambiguous view is seen so that another picture 
can be token. To some extent these actions can be integrated into the hier- 
archy but further thought is necessary to do so cleanly. 

The heap-breaking routines were also developed as an independent 
package; they do not call the recognizer, they originally used only basic 
facilities. It was only when the pieces of the system were put together that 
they were integrated a little more, checking that the heap is unrecognizable 
before attacking it and usinf the "world model" to choose a place to put 
down an object grabbed. 

The assembly procedures remain an independent package. They use no 
vision, and do not even use the world model for specifying location of parts 
initially. In fact, only the basic manipulative procedures are shared with the 
rest of the system. The assembly routines represent only about 10~o of the 
complete system. 

Putting the pieces of the system together was remarkably trouble-free. We 
can attribute this mainly to the gross modularity of the system and the in- 
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dependence of the component pieces, and .partly to daily interaction of those 
of us writing the program. 

A master package which called the recognizer, heap-breaker and assembler 
(and included.the rest of the system--exploration, laying out and clearing 
away routines) was written. It seems to contain most of t hemore  messy 
processes, such as maintaining the world model and dealing withdisasters, 
and most of the interactions. Initially the master package was written with 
very simple subroutines representing the other packages, which were eventu- 
ally slotted in later. Afterwards, however, some attempt was made to integrate 
the packages by eliminating duplicated procedures, generalizing procedures, 
sharing representations and so on, but there is still scope for further rational- 
ization and integration. 

8.2. Performance 
Despite its apparent crudeness, the system works quite well. It usually 
manages to accomplish its task successfully. It is apparent that the layout 
phase is more robu:,~ than the assembly phase. We; can attribute this to three 
factors. Firstly the layout routines use much feedback during their activities, 
particularly visual input (the system typically takes up to 150 pictures in 
assembling the car and ship simultaneously). The assembly routines, however, 
fail if contact with a part is lost. Secondly, the layout routines maintain a 
flexible world model and a more explicit representation of objects, etc. The 
assembly routines have no models which can be used for planning, prediction, 
etc., nor updated; all information is embedded in the program in an opaque 
manner. Thirdly, while the assembly routines can recover from minor 
positional errors, recovery from gross errors is very difficult. The layout 
routines do not have the intelligence or ability to break rp a half completed 
assembly, nor even to recognize it as such, even less so the assembly routines. 

The robustness and dexterity of the layout xoutines lie mainly in the 
control scheme" it is very persistent, and it does not abdicate too much 
responsibility to subordinates. The decision what to do next is made fre- 
quently, and on the basis of all the available t~ormation, so the system never 
persists with an inappropriate task but uses serendipity. 

It seems that to try to use backtracking, co-routining or multiple processes 
would actually be less appropriate and less effective, and probably not even 
easier. While we were writing the yystem, we occasionally thought that a 
higher level language, such as PLANNER or CONNIVER would have been ad- 
vantageous. Looking at the completed system, it seems that the facilities 
such languages provide would not be much exercised. The representation of 
the world is particularly simple, and the control structure is too. POP-2 was 
a very good language for writing this program; its facilities were precisely 
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what were needed. On the other hard, the structure of the system might have 
been very different if a higher lev~1 langoage had been used. 

8,3. Improvements 
Having completed the project, in what ways could we improve upon the 
system ? 

Certainly the most significant simplification we made was the avoidance 
of the 3-dimensional aspects of the problem, except in the very simple case 
of computing the "volume" (i.e,, enclosing box) occupied by an object. To 
deal with these adequately it is necessary to consider: 

(1) How to model 3-dimensional objects, and assemblies. 
(2) The relation between the 3-D shape of an object or an assembly, and 

its appearance from an arbitrary viewpoint. 
(3) The synthesis of a 3.D description of an object from several different 

views of it. 
(4) Making the system "understand" the effects of various handling 

operations on the actual position of an object, and therefore able to reason 
about the result of grasping, tilting, moving, etc. 

(5) The description of the assembly process in general terms as a sequence 
of statements about relations to be made to hold between featuresof objects, 
rather t~an as a s~quence of program instructions involving numerical 
coordinates. 

Work i~ currently in progress on these problems, but it will be appreciated 
that each requires a major project of its own. 

The system at present does no planning, apart from choosing an empty 
space into which to put down an object. In fact there was little need for 
planning, in the sense of reasoning and making hypotheses; most decisions 
have an Obvious or easily computable best alternative. One may argue that 
there has been too much emphasis in the field of A.I. upon planning and 
"problem-solving", and not enough on "doing". The current wave of A.L 
languages seems to reflect this, as we remarked earlier. Perhaps "doing" is 
just harder to work on, with more effort necessary before demonstrable 
success, and is consequently more expensive. It is certainly a strain to remain 
true to one's scientific ideals while being criticized simultaneously for not 
using tricks and short,cuts to make things faster and cheaper, and for using 
tricks and short-cuts to constrain the problem domain! 

Producing the system raised one or two issues, other than 3,dimensionality, 
which are worth further investigation. One is the clique-findingapproach to 
recognition, which arose spontaneously, from the project. The approach has 
many virtues, pseudo-parallelism, non-localness, and is acvaaily closely 
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related to other domains, such as constraint satisfaction, ~ inference making 
and programming languages. 

The process for automatic learning of descriptions is unsatisfactory, since 
undue importance is given to thc first view of an object, A subsequent view 
does modify a model; but only those parts of i t  are used which actually 
match the existing model. We would like to extendthe idea of  matching pairs 
of relational structures to matching sets of such structures in order to make 
better models. No work has been done on this. 

The representation of the world (objects, assemblies, robots, tools, etc.) 
~md the use and maintenan~ of the representation ' is something that  our 
present project barely touched upon. It is Worthy of a great deal more work. 

Lastly, the control structure of a system which has a high degree of inter- 
~ t ion  with the outside world (expectations, surprises, and very high in- 
formation transfer rates) has been hitherto rather ignored. It too deserves 
further research. 

Writing the program has provided a useful insight into the problems im- 
portant to an integrated as~mbly system. By tackling a definite, but de- 
liberately simplified, task we haw explored the ways in which full advantage 
might be taken of the apparatus and programs available to us (e.g., using 
the hand to make the vision problems simple ones). The requirement of 
versatility has meant that we have had to introduce methods of learning by 
example and therefore the construction and generalization of models. 

Our primary intention in writing this versatile assembly program was to 
explore the problem area, making certain simplifications in order to evade 
currently difficult problems. We regard the present system as a zero-order 
version with considerable room for improvement, but it is clear that much 
has been accomplished with relatively simple ingredients put together in an 
appropriate way. 
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